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MIXED  LOJASIEWICZ EXPONENTS, LOG CANONICAL

THRESHOLDS OF IDEALS AND BI-LIPSCHITZ EQUIVALENCE

CARLES BIVIÀ-AUSINA AND TOSHIZUMI FUKUI

Abstract. We study the  Lojasiewicz exponent and the log canonical threshold of ideals

of On when restricted to generic subspaces of Cn of different dimensions. We obtain

effective formulas of the resulting numbers for ideals with monomial integral closure.

An inequality relating these numbers is also proven. We also introduce the notion of

bi-Lipschitz equivalence of ideals and we prove the bi-Lipschitz invariance of  Lojasiewicz

exponents and log canonical thresholds of ideals.

1. Introduction

In 1970, O. Zariski posed in [51, p. 483] the following celebrated question:

Let f and g be two holomorphic function germs (Cn, 0) → (C, 0). If there is a

homeomorhism ϕ : (Cn, 0) → (Cn, 0) so that ϕ(f−1(0)) = g−1(0), then do the

germs f and g have the same multiplicity?

This question is still unsolved except for the case n = 2 and is known as the Zariski’s

multiplicity conjecture (see the survey [13]). One of the main difficulties to attack this

question comes from the fact that the image of a line by a homeomorphism ϕ : (Cn, 0) →
(Cn, 0) may not carry any algebraic (or analytic) structure.

Let On denote the ring of complex analytic function germs (Cn, 0) → C and let mn

denote the maximal ideal of On. We recall that the multiplicity or order of f is defined

as the maximum of those r ∈ Z>1 such that f ∈ mr
n.

Let f ∈ On such that f has an isolated singularity at the origin. In his famous book

[32], J. Milnor showed several topological interpretations of the number

µ(f) = dimCOn/〈 ∂f
∂x1

, . . . , ∂f
∂xn

〉,

which is usually known as the Milnor number of f . Zariski’s multiplicity conjecture and

Milnor’s book have been some of the most important motivations of many researchers

to explore the relations between invariants of different nature (topological, analytic or

algebraic) of a given singular function germ f ∈ On, or more generally, of complete

intersection singularities.

B. Teissier introduced in [47, p. 300] the sequence of Milnor numbers

µ∗(f) =
(
µ(n)(f), µ(n−1)(f), . . . , µ(1)(f)

)
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where µ(i)(f) denotes the Milnor number of the restriction of f to a generic linear i-

dimensional subspace of Cn, for i ∈ {0, 1, . . . , n}. In particular µ(1)(f) = ord(f) − 1 and

µ(n)(f) = µ(f). By the results of Teissier [47, p. 334] and Briançon-Speder [10, p. 159]

we know that, if ft : (Cn, 0) → (C, 0) denotes an analytic family of function germs such

that ft have simultaneously isolated singularities at 0, then the constancy of µ∗(ft) is

equivalent to the Whitney equisingularity of the deformation ft. In [46, 1.7], Teissier

also obtained a relation between the set of polar multiplicities of a given function germ

f ∈ On with the  Lojasiewicz exponent L0(∇f). The number L0(∇f) is defined as the

infimum of those α ∈ R>0 for which there exists a positive constant C > 0 and an open

neighbourhood U of 0 ∈ Cn such that

‖x‖α 6 C‖∇f(x)‖

for all x ∈ U , where ∇f denotes the gradient map ( ∂f
∂x1

, . . . , ∂f
∂xn

) of f . Teissier also asked

in [46, p. 287] whether L0(∇ft) remains constant in µ-constant analytic deformations

ft : (Cn, 0) → (C, 0). There is still no general answer to this question. However as

a consequence of [46, 1.7] and [46, Théorème 6] it follows that, if ft : (Cn, 0) → (C, 0)

denotes a µ∗-constant analytic deformation, then L0(∇ft) is also constant.

The research of such invariants is motivated not only to understand the topology of

hypersurfaces and singular varieties in general but also to understand the behaviour of

functions and maps. In [31], J. Mather introduced the language to investigate singulari-

ties of maps and functions. This language has been widely-accepted and studied (see for

instance the survey of C. T. C. Wall [50]). J. Mather defined the notions of right equiva-

lence, right-left equivalence and contact equivalence for map germs. The corresponding

equivalence classes are the orbits of the action of the groups R, A and K respectively,

where

• R is the group of diffeomorphism germs of the source,

• A is the direct product of the group of diffeomorphism germs of the source and

the target,

• K is the group that is formed by the elements (ϕ(x), φx(y)) so that

• x 7→ ϕ(x) is a diffeomorphism germ of the source, and

• y 7→ φx(y) are diffemorphism germs of the target for any x.

In [31, (2.3)], J. Mather also showed that two map germs f and g are contact equivalent

if and only if the ideals generated by the component functions of f and that of g ◦ ϕ,

respectively, are the same for some coordinate change ϕ of the source. These notions have

clearly a holomorphic analogue. For shortness, we often call right equivalence, right-left

equivalence and contact equivalence by R-equivalence, A-equivalence, and K-equivalence,

respectively.

It is natural to consider the bi-Lipschitz analogue of these notions. This direction seems

to be first considered in [43] by J.-J. Risler and D. Trotman in the context of singularity

theory after the establishment of the theory of Lipschitz stratifications [35] (see also [37]).

They showed that if two holomorphic function germs are right-left equivalent in the bi-

Lipschitz sense, then they have the same multiplicity. This fact was a bit surprising, since
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there is a bi-Lipschitz homeomorphism which sends a semi-line to the log spiral:

(R2, 0) → (R2, 0), (r, θ) → (r, θ − log r), in terms of polar coordinates (r, θ).

The images of lines by bi-Lipschitz homeomorphisms may not be analytic spaces, but the

concept of bi-Lipschitz homeomorphism is substantially more fruitful than just talking

about homeomorphisms. After [43], researchers in singularity theory started to investigate

singularities from the viewpoint of bi-Lipschitz equivalence in several contexts. According

to this, we list (non-exhaustively) the following topics of study and some references:

• bi-Lipschitz R-classification of functions ([14, 18, 19, 44])

• properties on bi-Lipschitz K-equivalence ([3, 44])

• classification of complex surfaces singularities in the bi-Lipschitz context ([2])

• directional properties of subanalytic sets via bi-Lipschitz homeomorphisms ([25])

• bi-Lipschitz stratifications ([24, 48])

• the notion of integral closure technique in the bi-Lipschitz context ([16]).

One of the motivations of this paper is the study of the invariance of L0(∇f) under

bi-Lipschitz equivalences (see Subsection 2.1 and Theorem 6.1) and related outcomes of

the discussion based on the estimation of  Lojasiewicz exponents. Moreover, we explore in

§3, §4 and §5 the notion of  Lojasiewicz exponent L0(I1, . . . , In) of n ideals in a Noetherian

local ring of dimension n. This concept was introduced in [4] using the notion of mixed

multiplicities of ideals. If I denotes an ideal of finite colength of On, then we are par-

ticularly interested in the  Lojasiewicz exponent that arises when restricting I to generic

linear subspaces of Cn of different dimensions, thus leading to the sequence of relative

 Lojasiewicz exponents (see Definition 3.7).

The notion of mixed multiplicities of ideals was originated by the results of Risler and

Teissier in [47] about the study of the µ∗-sequence of function germs with an isolated

singularity at the origin. Subsequently there is a well-developed theory of the notion of

mixed multiplicities of ideals which can be found in [23] (see also the invaluable paper of

D. Rees [41]).

In §4, we discuss a generalization of an inequality proven by Hickel [21]. In §5 we obtain

an expression of the sequence of relative  Lojasiewicz exponents of a monomial ideal I of

On in terms of the Newton polyhedron of I. In §6, we show the bi-Lipschitz A-invariance

of L0(∇f) and several outcomes of the proof. We also show a result about the constancy

of  Lojasiewicz exponents in µ-constant deformations of weighted homogeneous functions

(Cn, 0) → (C, 0). In §7, we discuss the notion of log canonical threshold lct(I) of an ideal

I of On. We show that this number is bi-Lipschitz invariant and show a relation between

lct(I) and  Lojasiewicz exponents that enables us to express lct(I) in terms of  Lojasiewicz

exponents when the integral closure I of I is a monomial ideal. In §8 we discuss the

behaviour of lct(I) when restricting I to generic i-dimensional linear subspaces of Cn, for

i = 1, . . . , n. Then there arises the sequence lct∗(I) = (lct(n)(I), . . . , lct(1)(I)) for which

we show a closed formula when I is a monomial ideal.

The authors would like to thank S. Ishii, M. A. S. Ruas and D. Trotman for helpful

conversations.
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2. Preliminaries

We start by recalling notational conventions. Let a(x) and b(x) be two function germs

(Cn, x0) → R, where x0 ∈ Cn. Then

• a(x) . b(x) near x0 means that there exists a positive constant C > 0 and an

open neighbourhood U of x0 in Cn such that a(x) 6 C b(x), for all x ∈ U .

• a(x) ∼ b(x) near x0 means that a(x) . b(x) near x0 and b(x) . a(x) near x0.

For an n-tuple x = (x1, . . . , xn) ∈ Cn, we write ‖x‖ =
√

|x1|2 + · · · + |xn|2.
2.1. Bi-Lipschitz equivalences. We start with recalling the definition of bi-Lipschitz

map. A map germ f : (Cn, 0) → (Cp, 0) is said to be Lipschitz if

‖f(x) − f(x′)‖ . ‖x− x′‖ near 0.

We say that a homeomorphism h : (Cn, 0) → (Cn, 0) is bi-Lipschitz if h and h−1 are Lip-

schitz. Now we can state obvious bi-Lipschitz analogues for several equivalence relations:

• Two map germs f, g : (Cn, 0) → (Cp, 0) are said to be bi-Lipschitz R-equivalent if

there is a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) so that f = g ◦ ϕ.

• Two map germs f, g : (Cn, 0) → (Cp, 0) are said to be bi-Lipschitz A-equivalent if

there are a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) and a bi-Lipschitz

homeomorphism φ : (Cp, 0) → (Cp, 0) so that φ(f(x)) = g(ϕ(x)), for all x belong-

ing to some open neighbourhood of 0 ∈ Cn.

• Two map germs f, g : (Cn, 0) → (Cp, 0) are said to be bi-Lipschitz K-equivalent if

there are a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) and a bi-Lipschitz

homeomorphism Φ : (Cn×Cp, 0) → (Cn×Cp, 0), written as (x, y) 7→ (ϕ(x), φx(y)),

so that Φ(Cn × {0}) = Cn × {0} and φx(f(x)) = g(ϕ(x)), for all x belonging to

some open neighbourhood of 0 ∈ Cn.

• Two map germs f, g : (Cn, 0) → (Cp, 0) are said to be bi-Lipschitz K∗-equivalent

if there are a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) and a map

A : (Cn, 0) → GL(Cp) so that A(x) and A(x)−1 are Lipschitz and that A(x)f(x) =

g(ϕ(x)), for all x belonging to some open neighbourhood of 0 ∈ Cn.

• Two subsets X1 and X2 of (Cn, 0) are bi-Lipschitz equivalent if there is a bi-

Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) so that ϕ(X1) = X2.

The definition of bi-Lipschitz K-equivalence is used in [3]. It is possible to consider a

weaker version of the definition of K-equivalence by replacing the condition that Φ is

bi-Lipschitz by the condition that φx is bi-Lipschitz, for all x belonging to some open

neighbourhood of 0 ∈ Cn. We only need this condition in the proof of Theorem 7.3.

The definition of K∗-equivalence is inspired by the condition (iii) of the first proposition

in paragraph (2.3) in [31].

For a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0), we do not have the induced

map ϕ∗ : On → On, since f ◦ϕ may not be holomorphic for f ∈ On. So we introduce the

following definition.

Definition 2.1. Let I and J be ideals of On. We say that I and J are bi-Lipschitz

equivalent if there exist two families f1, . . . , fp and g1, . . . , gq of functions of On such that

(a) 〈f1, . . . , fp〉 ⊆ I and 〈f1, . . . , fp〉 = I,
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(b) 〈g1, . . . , gq〉 ⊆ J and 〈g1, . . . , gq〉 = J ,

(c) there is a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) such that

‖(f1(x), . . . , fp(x))‖ ∼ ‖(g1(ϕ(x)), . . . , gq(ϕ(x)))‖ near 0.

We remark that, under the conditions of item (a), the ideal 〈f1, . . . , fp〉 is usually called

a reduction of I (see [23, p. 6]).

Here there are some obvious consequences:

• If two map germs f, g : (Cn, 0) → (Cp, 0) are bi-Lipschitz R-equivalent, then they

are bi-Lipschitz A (and K∗)-equivalent.

• If two map germs f, g : (Cn, 0) → (Cp, 0) are bi-Lipschitz A-equivalent or K∗-

equivalent, then they are bi-Lipschitz K-equivalent.

• If two map germs f and g are bi-Lipschitz K-equivalent, then the ideals generated

by their components are bi-Lipschitz equivalent.

• If two ideals are bi-Lipschitz equivalent, then their zero loci are bi-Lipschitz equiv-

alent.

The following questions seem to be open.

Question 2.2. • If f and g are bi-Lipschitz K-equivalent, are f and g bi-Lipschitz

K∗-equivalent?

• If f and g are bi-Lipschitz A-equivalent, are f and g bi-Lipschitz K∗-equivalent?

Question 2.3. Let X and Y be germs of complex analytic subvarieties at 0 in Cn. If

there exist a bi-Lipschitz homeomorphism h : (Cn, 0) → (Cn, 0) so that h(X) = Y , are

the respective defining ideals of X and Y bi-Lipschitz equivalent?

Let f, g : (Cn, 0) → (C, 0) be two holomorphic functions. Assume that there is a bi-

Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) so that f−1(0) = ϕ(g−1(0)). The authors

do not know whether g(ϕ(x))/f(x) is bounded away from 0 and infinity, or not.

2.2.  Lojasiewicz exponent of ideals. Let I and J be ideals of On. Let {f1, . . . , fp} be

a generating system of I and let {g1, . . . , gq} be a generating system of J . Let us consider

the maps f = (f1, . . . , fp) : (Cn, 0) → (Cp, 0) and g = (g1, . . . , gq) : (Cn, 0) → (Cq, 0). We

define the  Lojasiewicz exponent of I with respect to J , denoted by LJ(I), as the infinimum

of the set

(2.1)
{
α ∈ R>0 : ‖g(x)‖α . ‖f(x)‖ near 0

}
.

By convention, we set inf ∅ = ∞. So if the previous set is empty, then we set LJ(I) = ∞.

We thus have that LJ(I) is finite if and only if V (I) ⊆ V (J) (see [30]).

Let us suppose that the ideal I has finite colength. When J = mn, then we denote the

number LJ(I) by L0(I). That is

L0(I) = inf
{
α ∈ R>0 : ‖x‖α . ‖f(x)‖ near 0

}
.

We refer to L0(I) as the  Lojasiewicz exponent of I.
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3. The sequence of mixed  Lojasiewicz exponents

If I denotes an ideal of a ring R, then we denote by I the integral closure of I. Let

us suppose that I is an ideal of finite colength of On and let J be a proper ideal of

On. Then, by virtue of the results of Lejeune and Teissier in [30, Théorème 7.2], the

 Lojasiewicz exponent LJ(I) can be expressed algebraically as

LJ(I) = inf
{r

s
: r, s ∈ Z>1, J

r ⊆ Is
}

.

This fact is one of the motivations of the definition in [4] of the notion of  Lojasiewicz

exponent of a set of ideals. The main tool used for this definition is the mixed multiplicity

of n ideals in a local ring of dimension n.

Let (R,m) denote a Noetherian local ring of dimension n. If I1, . . . , In are ideals of R of

finite colength, then we denote by e(I1, . . . , In) the mixed multiplicity of I1, . . . , In defined

by Teissier and Risler in [47, §2]. We also refer to [23, §17.4] or [45] for the definitions

and fundamental results concerning mixed multiplicities of ideals. Here we recall briefly

the definition of e(I1, . . . , In). Under the conditions exposed above, let us consider the

function H : Zn
>0 → Z>0 given by

(3.1) H(r1, . . . , rn) = ℓ

(
R

Ir11 · · · Irnn

)

,

for all (r1, . . . , rn) ∈ Zn
>0, where ℓ(M) denotes the length of a given R-module M . Then,

it is proven in [47] that there exists a polynomial P (x1, . . . , xn) ∈ Q[x1, . . . , xn] of degree

n such that

H(r1, . . . , rn) = P (r1, . . . , rn),

for all sufficiently large r1, . . . , rn ∈ Z>0. Moreover, the coefficient of the monomial

x1 · · ·xn in P (x1, . . . , xn) is an integer. This integer is called the mixed multiplicity of

I1, . . . , In and is denoted by e(I1, . . . , In).

We remark that if I1, . . . , In are all equal to a given ideal I of finite colength of R, then

e(I1, . . . , In) = e(I), where e(I) denotes the Samuel multiplicity of I. If i ∈ {0, 1, . . . , n},

then we denote by ei(I) the mixed multiplicity e(I, . . . , I,m, . . . ,m), where I is repeated

i times and the maximal ideal m is repeated n− i times. In particular en(I) = e(I) and

e0(I) = e(m).

If f ∈ On is an analytic function germ with an isolated singularity at the origin and

J(f) denotes the Jacobian ideal of f , then we denote by µ(i)(f) the Milnor number of the

restriction of f to a generic linear subspace of dimension i passing through the origin in Cn,

for i = 0, 1, . . . , n. Teissier showed in [47] that µ(i)(f) = ei(J(f)), for all i = 0, 1, . . . , n.

The µ∗-sequence of f is defined as µ∗(f) = (µ(n)(f), . . . , µ(1)(f)).

If g1, . . . , gr ∈ R and they generate an ideal J of R of finite colength then we denote

the multiplicity e(J) also by e(g1, . . . , gr). We will need the following known result (see

for instance [23, p. 345]).

Lemma 3.1. Let (R,m) be a Noetherian local ring of dimension n > 1. Let I1, . . . , In
be ideals of R of finite colength. Let g1, . . . , gn be elements of R such that gi ∈ Ii, for all

i = 1, . . . , n, and the ideal 〈g1, . . . , gn〉 has also finite colength. Then

e(g1, . . . , gn) > e(I1, . . . , In).
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Definition 3.2. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R. Then we define

(3.2) σ(I1, . . . , In) = max
r∈Z>1

e(I1 + mr, . . . , In + mr).

The set of integers {e(I1 + mr, . . . , In + mr) : r ∈ Z>0} is not bounded in general.

Thus σ(I1, . . . , In) is not always finite. The finiteness of σ(I1, . . . , In) is characterized

in Proposition 3.3. We remark that if Ii has finite colength, for all i = 1, . . . , n, then

σ(I1, . . . , In) equals the usual notion of mixed multiplicity e(I1, . . . , In).

Let us suppose that the residue field k = R/m is infinite. Let I1, . . . , In be ideals of R.

We say that a given property is satisfied for a sufficiently general element of I1⊕· · ·⊕ In,

when, after identifying (I1/mI1) ⊕ · · · ⊕ (In/mIn) with ks, for some s > 1, there exist a

Zariski open subset U ⊆ ks such that the said property holds for all elements of U .

Proposition 3.3 ([5, p. 393]). Let I1, . . . , In be ideals of a Noetherian local ring (R,m)

such that the residue field k = R/m is infinite. Then σ(I1, . . . , In) < ∞ if and only if

there exist elements gi ∈ Ii, for i = 1, . . . , n, such that 〈g1, . . . , gn〉 has finite colength.

In this case, we have that σ(I1, . . . , In) = e(g1, . . . , gn) for a sufficiently general element

(g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

Proposition 3.3 shows that, if σ(I1, . . . , In) < ∞, then σ(I1, . . . , In) is equal to the mixed

multiplicity of I1, . . . , In defined by Rees in [40, p. 181] (see also [42]) via the notion of

general extension of a local ring. Therefore, we will refer to σ(I1, . . . , In) as the Rees’

mixed multiplicity of I1, . . . , In.

Lemma 3.4 ([4, p. 392]). Let (R,m) be a Noetherian local ring of dimension n > 1. Let

J1, . . . , Jn be ideals of R such that σ(J1, . . . , Jn) < ∞. Let I1, . . . , In be ideals of R for

which Ji ⊆ Ii, for all i = 1, . . . , n. Then σ(I1, . . . , In) < ∞ and

σ(J1, . . . , Jn) > σ(I1, . . . , In).

Under the conditions of Definition 3.2, let us denote by J a proper ideal of R. From

Lemma 3.4 we obtain easily that

σ(I1, . . . , In) = max
r∈Z>0

σ(I1 + Jr, . . . , In + Jr).

Let us suppose that σ(I1, . . . , In) < ∞. Hence, we define

(3.3) rJ(I1, . . . , In) = min
{
r ∈ Z>0 : σ(I1, . . . , In) = σ(I1 + Jr, . . . , In + Jr)

}
.

If I is an ideal of finite colength of R then we denote rJ(I, . . . , I) by rJ(I). We remark

that if R is quasi-unmixed, then, by the Rees’ multiplicity theorem (see for instance [23,

p. 222]) we have

rJ(I) = min
{
r ∈ Z>0 : Jr ⊆ I

}
.

We will denote the integer r
m

(I) by r0(I).

Definition 3.5 ([6]). Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In
be ideals of R such that σ(I1, . . . , In) < ∞. Let J be a proper ideal of R. We define the
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 Lojasiewicz exponent of I1, . . . , In with respect to J , denoted by LJ(I1, . . . , In), as

(3.4) LJ(I1, . . . , In) = inf
s>1

rJ(Is1 , . . . , I
s
n)

s
.

In accordance with mixed multiplicities of ideals, we also refer to the number LJ(I1, . . . , In)

as the mixed  Lojasiewicz exponent of I1, . . . , In with respect to J ; when J = m we denote

this number by L0(I1, . . . , In).

Remark 3.6. Let us observe that, under the conditions of Definition 3.5, if I is an ideal

of finite colength of R such that I1 = · · · = In = I, then the right hand side of (3.4) can

be rewritten as

(3.5) inf
{r

s
: r, s ∈ Z>1, e(I

s) = e(Is + Jr)
}

.

If we assume that R is quasi-unmixed and r, s ∈ Z>1, then the condition e(Is) = e(Is+Jr)

is equivalent to saying that Jr ⊆ Is, by the Rees’ multiplicity theorem. Therefore (3.5)

is expressed as

inf
{r

s
: r, s ∈ Z>1, J

r ⊆ Is
}

,

which coincides with the usual notion of  Lojasiewicz exponent LJ(I) of I with respect to

J (see [30, Théorème 7.2]).

As a particular case of the previous definition we introduce the following concept.

Definition 3.7. Let (R,m) be a Noetherian local ring of dimension n. Let I be an ideal

of R of finite colength. If i ∈ {1, . . . , n}, then we define the i-th relative  Lojasiewicz

exponent of I as

(3.6) L(i)
0 (I) = L0(I, . . . , I

︸ ︷︷ ︸

i times

,m, . . . ,m
︸ ︷︷ ︸

n− i times

).

We define the L∗
0-vector, or L∗

0-sequence, of I as

L∗
0(I) =

(
L(n)

0 (I), . . . ,L(1)
0 (I)

)
.

If J denotes a proper ideal of R, then we define the i-th relative  Lojasiewicz exponent of

I with respect to J , denoted by L(i)
J (I), by replacing m by J in (3.6). The L∗

J -sequence of

I is defined analogously.

Definition 3.8. Let (X, 0) ⊆ (Cn, 0) be the germ at 0 of a complex analytic variety

X . Let h1, . . . , hm ∈ On such that (X, 0) = V (h1, . . . , hm). Let h denote the map

(h1, . . . , hm) : (Cn, 0) → (Cm, 0). Let I be an ideal of On such that V (I) ∩ X = {0}.

Then we define the  Lojasiewicz exponent of I relative to (X, 0) as the infimum of those

α > 0 such that there exists a constant C > 0 and an open neighbourhood U of 0 ∈ Cn

such that ‖x‖α 6 C‖h(x)‖, for all x ∈ U ∩X .

By the results of Lejeune-Teissier [30] we have that if J is the ideal of On generated by

h1, . . . , hm, then L(X,0)(I) = LJ(I).

We will study the number L(X,0)(I) specially when (X, 0) is a linear subspace of Cn.
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Theorem 3.9. Let π : M → Cn be a proper modification so that π∗(mI)0 is formed by

normal crossing divisors whose support has the irreducible decomposition ∪iDi. If

(π∗m)0 =
∑

i

siDi, (π∗I)0 =
∑

i

miDi, si, mi ∈ Z,

then we have

(3.7) L(X,0)(I) = max

{
mi

si
: Di ∩X ′ 6= ∅

}

where X ′ denotes the strict transform of X by π (see [7] for details).

4. Inequalities relating  Lojasiewicz exponents and mixed multi-

plicities

This section is motivated by the results of Hickel in [21]. In this section we show some

results showing how  Lojasiewicz exponents are related with quotients of mixed multiplic-

ities; the main result in this direction is Theorem 4.7.

Proposition 4.1. Let (R,m) be a quasi-unmixed Noetherian local ring of dimension n.

Let I1, . . . , In, J be ideals of R such that σ(I1, . . . , In) < ∞, σ(I1, . . . , In−1, J) < ∞ and

In has finite colength. Then

σ(I1, . . . , In)

σ(I1, . . . , In−1, J)
6 LJ(In).

Proof. Let r, s ∈ Z>1. Let us suppose that Jr ⊆ Isn. Then we obtain

r · σ(I1, . . . , In−1, J) = σ(I1, . . . , In−1, J
r)(4.1)

> σ(I1, . . . , In−1, I
s
n) = s · σ(I1, . . . , In−1, In).(4.2)

We refer to [4, Lemma 2.6] for equality (4.1) and to Lemma 3.1 for the inequality in (4.2).

In particular
r

s
>

σ(I1, . . . , In−1, In)

σ(I1, . . . , In−1, J)
.

By [30, Théorème 7.2] we have LJ(In) = inf{ r
s

: r, s ∈ Z>1, J
r ⊆ Isn} (see Remark 3.6).

Then the result follows. �

Corollary 4.2. Let (R,m) be a quasi-unmixed Noetherian local ring of dimension n. Let

I be an ideal of finite colength of R. Then

(4.3)
e(I)

en−1(I)
6 L0(I).

and equality holds if and only if

en−1(I)ne(I) = e(Ien−1(I) + me(I)).

Proof. Inequality (4.3) follows from applying Proposition 4.1 to the case I1 = · · · = In = I

and J = m.

By the definition of L0(I) we observe that equality holds in (4.3) if and only if me(I) ⊆
Ien−1(I). This inclusion is equivalent to saying that e(Ien−1(I)) = e(Ien−1(I) +me(I)), by the

Rees’ multiplicity theorem. �
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Remark 4.3. Let w = (w1, . . . , wn) ∈ Zn
>1 and let d ∈ Z>1. Let us denote mini wi by w0.

Let f ∈ On denote a semi-weighted homogeneous function germ of degree d with respect

to w. It is known that L0(∇f) 6 d−w0

w0
(see for instance [6, Corollary 4.7]). Hence it

is interesting to determine when L0(∇f) attains the maximum possible value d−w0

w0
(see

[6, 28]).

By (4.3) we obtain

(4.4)
µ(f)

µ(n−1)(f)
6 L0(∇f).

Therefore, if µ(f)

µ(n−1)(f)
= d−w0

w0
then we have the equality L0(∇f) = d−w0

w0
.

Let ft : (C3, 0) → (C, 0) denote the analytic family of functions of Briançon-Speder’s

example (see Example 5.5). We recall that ft is weighted homogeneous of degree 15 with

respect to w = (1, 2, 3), for all t. When t 6= 0, equality holds in (4.4) and thus we observe

that inequality (4.3) is sharp. However L0(∇f0) = d−w0

w0
but the equality does not hold in

(4.4).

We also remark that the Briançon-Speder’s example also shows that if f : (Cn, 0) →
(C, 0) is a weighted homogeneous function of degree d with respect to a given vector of

weights w = (w1, . . . , wn) ∈ Z>1, then we can not expect a formula for the whole sequence

µ∗(f) in terms of w and d.

Corollary 4.4. Let (R,m) be a quasi-unmixed Noetherian local ring of dimension n. Let

I1, . . . , In and J1, . . . , Jn be two families of ideals of R of finite colength. Then

(4.5)
e(I1, . . . , In)

e(J1, . . . , Jn)
6 LJ1(I1)LJ2(I2) · · · LJn(In).

In particular, if I is an ideal of R of finite colength, then

(4.6) e(I) 6 L0(I)n.

Proof. Relation (4.5) follows immediately as a recursive application of Proposition 4.1.

Inequality (4.6) is a consequence of applying (4.5) by considering I1 = · · · = In = I and

J1 = · · · = Jn = m. �

Lemma 4.5. Let (R,m) denote a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R such that σ(I1, . . . , In) < ∞. Let g ∈ In such that dimR/〈g〉 = n − 1 and let

p : R → R/〈g〉 denote the canonical projection. Then

σ(I1, . . . , In) 6 σ(p(I1), . . . , p(In−1)).

Proof. By Proposition 3.3, there exist gi ∈ Ii, for i = 1, . . . , n− 1, such that

σ(p(I1), . . . , p(In−1)) = σ(p(g1), . . . , p(gn−1)).

The image in a quotient of R of a given ideal of R has multiplicity greater than or equal

to the multiplicity of the given ideal (see for instance [23, Lemma 11.1.7] or [20, p. 146]).

Therefore

σ(p(I1), . . . , p(In−1)) = e(p(g1), . . . , p(gn−1)) > e(g1, . . . , gn−1, g) > σ(I1, . . . , In)

where the last inequality is a consequence of Lemma 3.1. �
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Proposition 4.6. Let (R,m) be a Noetherian local ring of dimension n > 2. Let J be

a proper ideal of R and let I1, . . . , In be ideals of R such that σ(I1, . . . , In) < ∞. Let g

denote a sufficiently general element of In and let p : R → R/〈g〉 denote the canonical

projection. Then

σ(p(I1), . . . , p(In−1)) = σ(I1, . . . , In)(4.7)

Lp(J)(p(I1), . . . , p(In−1)) 6 LJ(I1, . . . , In).(4.8)

Proof. Let us suppose that g ∈ In is a superficial element for I1, . . . , In according to [23,

Definition 17.2.1]. In particular, the element g can be considered as a sufficiently general

element of In, by [23, Proposition 17.2.2]. Therefore equality (4.7) holds, by a result of

Risler and Teissier [23, Theorem 17.4.6] (see also [47, p. 306]). From (4.7) we obtain the

following chain of inequalities, for any pair of integers r, s > 1:

σ(Is1 , . . . , I
s
n) = snσ(I1, . . . , In) = snσ(p(I1), . . . , p(In−1))

= s · σ(p(I1)
s, . . . , p(In−1)

s) > s · σ(p(I1)
s + p(J)r, . . . , p(In−1)

s + p(J)r)

> s · σ(Is1 + Jr, . . . , Isn−1 + Jr, In) = σ(Is1 + Jr, . . . , Isn−1 + Jr, Isn)(4.9)

> σ(Is1 + Jr, . . . , Isn−1 + Jr, Isn + Jr),

where the inequality of (4.9) is a direct application of Lemma 4.5. In particular, we find

that rp(J)(p(I1)
s, . . . , p(In−1)

s) 6 rJ(Is1 , . . . , I
s
n), for all s > 1, and hence relation (4.8)

follows. �

The next result shows an inequality that in some situations (see Corollary 4.8) is more

subtle than inequality (4.5). Moreover, Theorem 4.7 constitutes a generalization of the

inequality proven by Hickel in [21, Théorème 1.1].

Theorem 4.7. Let us suppose that (R,m) is a quasi-unmixed Noetherian local ring. Let

I1, . . . , In and J1, . . . , Jn two families of ideals of R of finite colength. Then

e(I1, . . . , In)

e(J1, . . . , Jn)
6 LJ1(I1, J2 . . . , Jn)LJ2(I2, I2, J3 . . . , Jn)LJ3(I3, I3, I3, J4 . . . , Jn)

· · · LJn−1(In−1, . . . , In−1, Jn)LJn(In, . . . , In).

Proof. By Proposition 4.1, we have

(4.10) e(I1, . . . , In) 6 e(I1, . . . , In−1, Jn)LJn(In).

Let gn ∈ Jn such that dimR/〈gn〉 = n − 1 and let p : R → R/〈gn〉 be the natural

projection. Therefore we obtain

(4.11) e(I1, . . . , In−1, Jn) 6 e(p(I1), . . . , p(In−1)),

by Lemma 4.5. Applying again Proposition 4.1 we have

e(p(I1), . . . , p(In−1)) 6 e(p(I1), . . . , p(In−2), p(Jn−1))Lp(Jn−1)(p(In−1))

6 e(p(I1), . . . , p(In−2), p(Jn−1))LJn−1(In−1, . . . , In−1, Jn),(4.12)

where (4.12) follows from Proposition 4.6. Thus joining (4.10), (4.11) and (4.12) we obtain

e(I1, . . . , In) 6 e (p(I1), . . . , p(In−2), p(Jn−1))LJn−1(In−1, . . . , In−1, Jn)LJn(In).
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Now we can bound the multiplicity e(p(I1), . . . , p(In−2), p(Jn−1)) by applying the same

argument. Then, by finite induction we construct a sequence of elements gi ∈ Ji, for

i = 2, . . . , n, such that dimR/〈gi, . . . , gn〉 = i− 1, for all i = 2, . . . , n, and if q denotes the

projection R → R/〈g2, . . . , gn〉, then

e(I1, . . . , In) 6 e(q(I1))LJ2(I2, I2, J3 . . . , Jn)LJ3(I3, I3, I3, J4 . . . , Jn)

· · · LJn−1(In−1, . . . , In−1, Jn)LJn(In, . . . , In).

By Propositions 4.1 and 4.6 we have

e(q(I1)) 6 e(q(J1))Lq(J1)(q(I1)) 6 e(q(J1))LJ1(I1, J2, . . . , Jn).

Moreover, we can assume from the beginning that gn, gn−1, . . . , g2 forms a superficial

sequence for Jn, Jn−1, . . . , J2, J1, in the sense of [23, Definition 17.2.1]. In particular we

have the equality e(q(J1)) = e(J1, . . . , Jn), by [23, Theorem 17.4.6]. Thus the result

follows. �

Corollary 4.8. Let (R,m) be a quasi-unmixed Noetherian local ring and let I and J be

ideals of R of finite colength. Then

e(I)

e(J)
6 L(1)

J (I) · · · L(n)
J (I),

where L(i)
J (I) = LJ(I, . . . , I

︸ ︷︷ ︸

i times

, J, . . . , J
︸ ︷︷ ︸

n− i times

), for i = 1, . . . , n.

Proof. It follows by considering I1 = · · · = In = I and J1 = · · · = Jn = J in the previous

theorem. �

From the above result we conclude that if f ∈ On has an isolated singularity at the

origin, then

µ(f) 6 L(1)
0 (∇f) · · ·L(n)

0 (∇f).

We remark that Theorem 4.7 and Corollary 4.8 are suggested by [21, Remarque 4.3].

Moreover, let us observe that the numbers ν
(i)
I defined by Hickel in [21, p. 635] in a regular

local ring coincide with the numbers L(i)
0 (I) introduced in Definition 3.7, as is shown in

the following lemma.

Lemma 4.9. Let (R,m) be a regular local ring with infinite residue field k. Let I be

an ideal of R of finite colength and let i ∈ {1, . . . , n − 1}. Then L(i)
0 (I) is equal to

the  Lojasiewicz exponent of the image of I in the quotient ring R/〈h1, . . . , hn−i〉, where

h1, . . . , hn−i are linear forms chosen generically in k[x1, . . . , xn] and x1, . . . , xn denote a

regular parameter system of R.

Proof. By [23, Proposition 17.2.2] and [23, Theorem 17.4.6], we can take generic lineal

forms h1, . . . , hn−i ∈ k[x1, . . . , xn] in order to have e(IRH) = ei(I), where RH denotes the

quotient ring R/〈h1, . . . , hn−i〉. Let us denote by mH the maximal ideal of RH . By [21,

Théorème 1.1], the number L0(IRH) does not depend on h1, . . . , hn−i. Let us denote the

resulting number by νi
I , as in [21]. We observe that

L0(IRH) = inf
{r

s
: mr

H ⊆ IsRH , r, s > 1
}
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= inf
{r

s
: e(IsRH) = e(IsRH + mr

H), r, s > 1
}

.

Moreover

L(i)
0 (I) = inf

{r

s
: ei(I

s) = ei(I
s + mr), r, s > 1

}

.

Let r, s > 1, then we have the following:

ei(I
s) = siei(I) = sie(IRH) = e(IsRH) > e(IsRH + mr

H) > ei(I
s + mr),

where the last inequality follows from Lemma 4.5. In particular, if ei(I
s) = ei(I

s + mr),

then e(IsRH) = e(IsRH + mr
H). This means that L0(IRH) 6 L(i)

0 (I) and consequently

νi
I 6 L(i)

0 (I).

Let us suppose that νi
I < L(i)

0 (I). Let r, s > 1 such that νi
I < r

s
< L(i)

0 (I). Therefore

ei(I
s) > e(Is + mr). Let us consider generic linear forms h1, . . . , hn−i ∈ k[x1, . . . , xn] such

that ei(I
s) = e(IsRH) and ei(I

s + mr) = e((Is + mr)RH), where RH = R/〈h1, . . . , hn−i〉.
Since ν

(i)
I = L0(IRH) < r

s
, then e(IsRH) = e((Is+mr)RH) and hence ei(I

s) = ei(I
s+mr),

which is a contradiction. Therefore L(i)
0 (I) = νi

I . �

Lemma 4.10. Let (R,m) be a quasi-unmixed Noetherian local ring and let I, J be ideals

of R of finite colength such that I ⊆ J . Let us suppose that the residue field k = R/m is

infinite. Let i ∈ {1, . . . , n− 1}. If ei+1(I) = ei+1(J), then ei(I) = ei(J).

Proof. Let h1, . . . , hn−i ∈ m sufficiently general elements of m. Let us define R1 =

R/〈h1, . . . , hn−i〉 and R2 = 〈h1, . . . , hn−i−1〉. If p : R → R1 and q : R → R2 denote

the natural projections, then ei(I) = e(p(I)R1), ei(J) = e(p(J)R1), ei+1(I) = e(q(I)R2)

and ei+1(J) = e(q(J)R2). Since the ring R2 is also quasi-unmixed (see for instance [23,

Proposition B.44]), the condition ei+1(I) = ei+1(J) implies that q(I) = q(J), where the

bar denotes integral closure in R2, by the Rees’ multiplicity theorem. In particular we

have p(I) = p(J), as an equality of integral closures in R1. Thus e(p(I)R1) = e(p(J)R1)

and the result follows. �

Corollary 4.11. Let (R,m) be a quasi-unmixed Noetherian local ring and let I, J be

ideals of R of finite colength. Let us suppose that the residue field k = R/m is infinite.

Then L(1)
J (I) 6 · · · 6 L(n)

J (I).

Proof. Let us fix an index i ∈ {1, . . . , n − 1}. Let us fix two integers r, s > 1 such that

ei+1(I
s) = ei+1(I

s + Jr). Then ei(I
s) = ei(I

s + Jr), by Lemma 4.10. Hence the result

follows from the definition of L(i)
J (I). �

5. Mixed  Lojasiewicz exponents of monomial ideals

Let v ∈ Rn
>0, v = (v1, . . . , vn). We define vmin = min{v1, . . . , vn} and A(v) = {j : vj =

vmin}. Given an index i ∈ {1, . . . , n}, we define S(i) = {v ∈ Rn
>0 : #A(v) > n+ 1− i} and

S
(i)
0 = {v ∈ Rn

>0 : #A(v) = n+1− i}. We observe that S(1) = S
(1)
0 = {(λ, . . . , λ) : λ > 0},

S(n) = Rn
>0 and S

(i)
0 = S(i) r S(i−1), for all i = 1, . . . , n, where we set S(0) = ∅.

If h ∈ On and h =
∑

k akx
k denotes the Taylor expansion of h around the origin,

then support of h is defined as the set supp(h) = {k ∈ Zn
>0 : ak 6= 0}. If h 6= 0, the
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Newton polyhedron of h, denoted by Γ+(h), is the convex hull in Rn of the set {k + v :

k ∈ supp(h), v ∈ Rn
>0}. If h = 0, then we set Γ+(h) = ∅. If I denotes an ideal of On

and g1, . . . , gr is a generating system of I, then the Newton polyhedron of I, denoted by

Γ+(I), is defined as the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gr). It is easy to check that the

definition of Γ+(I) does not depend on the chosen generating system g1, . . . , gr of I.

If v ∈ Rn
>0 and I denotes an ideal of On, then we define

ℓ(v, I) = min {〈v, k〉 : k ∈ Γ+(I)} ,
where 〈 , 〉 stands for the standard scalar product in Rn. Therefore, if v = (1, . . . , 1) ∈ Rn

>0,

then ℓ(v, I) = ord(I), where ord(I) is the order of I, that is, the minimum of those r > 1

such that I ⊆ mr. If h ∈ On and v ∈ Rn
>0, then the number ℓ(v, h) is also denoted by

dv(h) and we refer to dv(h) as the degree of h with respect to v.

Theorem 5.1. If I is a monomial ideal of On of finite colength, then

L(i)
0 (I) = max

{
ℓ(v, I)

vmin
: v ∈ S(i)

}

,

for all i = 1, . . . , n.

Proof. Let us fix an index i ∈ {1, . . . , n}. The closures of connected components S
(i)
0

form a regular subdivision corresponding to the blow up at the origin. Let us consider a

regular subdivision Σ of the dual Newton polyhedron of Γ+(I), which is also a subdivision

of {S(i)
0 }. Then we have a natural map from Σ to {S(i)

0 }. Take a vector a which is a

generator of 1-cone of Σ and denote by Ea the corresponding exceptional divisor. Then

Ea meets L′ if and only if the cone generated by a is in the closure of some connected

component of S
(i)
0 , i > n + 1 − k, where L′ denotes the strict transform of L. So (3.7)

implies the result. �

Let us fix a subset L ⊆ {1, . . . , n}, L 6= ∅. Then we define Rn
L = {x ∈ Rn : xi =

0, for all i /∈ L}. If h ∈ On and h =
∑

k akx
k is the Taylor expansion of h around the

origin, then we denote by hL the sum of all terms akx
k such that k ∈ Rn

L; if no such terms

exist then we set hL = 0. Let On,L denote the subring of On formed by all function germs

of On that only depend on the variables xi such that i ∈ L. If I is an ideal of On, then

IL denotes the ideal of On,L generated by all hL such that h ∈ I. In particular, if I is an

ideal of On of finite colength then I{i} 6= 0, for all i = 1, . . . , n.

Corollary 5.2. Let I be a monomial ideal of On of finite colength. Then, for all i ∈
{1, . . . , n}, we have

(5.1) L(i)
0 (I) = max

{
ord(I{j1,...,jn+1−i}) : 1 6 j1 < · · · < jn+1−i 6 n

}
.

Proof. Let us fix an index i ∈ {1, . . . , n} and let us denote the number on the right

hand side of (5.1) by mi(I). If v ∈ Rn
>0, then we denote the vector 1

vmin
v by wv. If

wv = (w1, . . . , wn), then we observe that wj = 1 whenever j ∈ A(v) and wj > 1, otherwise.

By Theorem 5.1 we have

L(i)
0 (I) = max

{
ℓ(wv, I) : v ∈ S(i)

}
.
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We remark that, since I is an ideal of finite colength, then IL 6= 0, for all L ⊆ {1, . . . , n},

L 6= ∅. Let us fix a vector v ∈ S(i). Then from the inclusion IA(v) ⊆ I we deduce

ℓ(wv, I) 6 ℓ(wv, I
A(v)) = ord(IA(v)). In particular, we have

max
{
ℓ(wv, I) : v ∈ S(i)

}
6 max

{
ℓ(wv, I

A(v)) : v ∈ S(i)
}

= max
{

ord(IA(v)) : v ∈ S(i)
}

6 max
{

ord(IA(v)) : v ∈ S
(i)
0

}

= max
{

ord(I{j1,...,jn+1−i}) : 1 6 j1 < · · · jn+1−i 6 n
}
.

Hence L(i)
0 (I) 6 mi(I). Let us see the converse inequality by proving that for any subset

L ⊆ {1, . . . , n} such that |L| = n + 1 − i, there exist some vector v ∈ Rn
>0 such that

A(v) = L and ℓ(wv, I) = ord(IL).

Let us fix a subset L ⊆ {1, . . . , n} such that |L| = n+1−i and let v = (v1, . . . , vn) ∈ Rn

such that vi = 1 for all i ∈ L and vj > ord(IL), for all j /∈ L. Let us observe that, if

xk /∈ IL, then there exists some j0 /∈ L such that kj0 > 1; in particular 〈v, k〉 > ord(IL).

Therefore we have

ℓ(wv, I) = ℓ(v, I) = min

{

min
xk∈IL

〈k, v〉, min
xk /∈IL

〈k, v〉
}

= min

{

ord(IL), min
xk /∈IL

〈k, v〉
}

= ord(IL).

Thus the result follows. �

Remark 5.3. If I denotes an ideal of finite colength of On then we observe that L∗
0(I) =

L∗
0(I). Therefore in Theorem 5.1 and Corollary 5.2 we can replace the ideal I by any ideal

of On whose integral closure is a monomial ideal.

Example 5.4. Let us consider the monomial ideal of O3 given by I = 〈xa, yb, zc, xyz〉,
where a, b, c ∈ Z>0 and 3 < a < b < c. Using the formula e(I) = 3!Vn(R3

>0 r Γ+(I)) we

obtain e(I) = ab + ac + bc. Moreover L∗
0(I) = (c, b, 3), by Corollary 5.2. We remark that

L∗
0(I) does not depend on a.

Example 5.5. Let us consider the family ft : (C3, 0) → (C, 0) given by:

ft(x, y, z) = x15 + z5 + xy7 + ty6z.

This is known as the Briançon-Speder’s example (see [9]). We have that ft has an isolated

singularity at the origin, ft is weighted homogeneous with respect to w = (1, 2, 3) and

dw(ft) = 15, for all t. Therefore L0(∇ft) = 14, for all t, by [28]. It is known that

µ(2)(f0) = 28 and µ(2)(ft) = 26, for all t 6= 0 (see [9]). Hence

µ∗(f) =

{

(364, 28, 5) if t = 0

(364, 26, 5) if t 6= 0.

It is straightforward to check that the ideal J(f0) is Newton non-degenerate, in the

sense of [8, p. 57]. Thus the integral closure of J(f0) is a monomial ideal. That is

J(f0) = 〈x14, y7, xy6, z4〉.
In particular, we can apply Corollary 5.2 to deduce

L∗
0(∇f0) = (14, 7, 5).
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If t 6= 0, then Γ+(J(ft)) = Γ+(J), where J is the monomial ideal given by J =

〈x14, y6, z4, y5z, xy6〉. Obviously J ⊆ J(ft). We observe that e(J) = 336, whereas

e(J(ft)) = 364. Since e(J) 6= e(J(ft)) we conclude that the ideal J(ft) is not New-

ton non-degenerate. In particular, we can not apply Corollary 5.2 to obtain the sequence

L∗
0(∇ft).

Let us compute the number L(2)
0 (J(ft)), for t 6= 0. Let us fix a parameter t 6= 0. We

remark that L(2)
0 (J(ft)) is equal to the  Lojasiewicz exponent of the function g(x, y) =

ft(x, y, ax + by), for generic values a, b ∈ C, by Lemma 4.9 and [47, Proposition 2.7].

We recall that if I denotes an ideal of On of finite colength, then we denote by r0(I)

the minimum of those r > 1 such that mr ⊆ I. Using Singular [11] we observe that

r0(J(g)) = 7.

By a result of P loski [38, Proposition 3.1], it is enough to compute the quotients r0(J(g)s)
s

only for those integers s such that 1 6 s 6 r0(J(g)s) 6 e(J(g)) = 26. Moreover, since

r0(J(g)) − 1 < L0(J(g)) = infs>1
r0(J(g)s)

s
, we can consider only the integers s such that

1 6 s 6
e(J(g))

r0(J(g))−1
= 26

6
≃ 4.3, that is, such that 1 6 s 6 4. Again, by applying Singular

[11] we obtain

r0(J(g)) = 7 r0(J(g)2) = 13 r0(J(g)3) = 20 r0(J(g)4) = 26.

Then

L0(J(g)) = min

{
r0(J(g))

1
,
r0(J(g)2)

2
,
r0(J(g)3)

3
,
r0(J(g)4)

4

}

= 6.5.

Summing up the above information we conclude

L∗
0(∇ft) =

{

(14, 7, 5) if t = 0

(14, 6.5, 5) if t 6= 0.

It is known that the deformation ft : (C3, 0) → (C, 0) is topologically trivial (see [9]).

However, this deformation is not bi-Lipschitz R-trivial, as is observed by Koike [26].

Therefore, the fact that L∗
0(∇f0) 6= L∗

0(∇ft), for t 6= 0, in this example constitutes a clue

pointing that, if f ∈ On is a function germ having an isolated singularity at the origin,

then the sequence L∗
0(∇f) might be invariant in the bi-Lipschitz R-orbit of f .

6. The bi-Lipschitz invariance of the  Lojasiewicz exponent

In this section we show three theorems. The first one shows that L0(∇f) is bi-Lipschitz

A-invariant and bi-Lipschitz K∗-invariant, for any f ∈ On with an isolated singularity at

the origin. The second shows the bi-Lipschitz invariance of L0(I) and ord(I), for any ideal

I of On of finite colength. The third one concerns the invariance of L0(∇f) in µ-constant

deformations of f .

Theorem 6.1. Let f, g ∈ On with an isolated singularity at the origin. Let us suppose

that f and g are bi-Lipschitz A-equivalent or bi-Lipschitz K∗-equivalent. Then L0(∇f) =

L0(∇g).

Proof. By symmetry, it is enough to show L0(∇f) 6 L0(∇g). Let us consider a bi-

Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0) and a bi-Lipschitz homeomorphism φ :
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(C, 0) → (C, 0) so that g(ϕ(x)) = φ(f(x)), for all x belonging to some open neighbourhood

of 0 ∈ Cn. By Rademacher’s theorem (see for instance [27, Theorem 5.1.11]), the partial

derivatives of ϕ and ϕ−1 exist in some open neighbourhood of 0 ∈ Cn except in a thin set.

The bi-Lipschitz property implies that ϕ and ϕ−1 are bounded. Then we conclude that

‖∇g(ϕ(x))‖ . ‖∇g(ϕ(x))Dϕ(x)‖ = ‖Dφ(f(x))∇f(x)‖ . ‖∇f(x)‖(6.1)

almost everywhere. By continuity, we have ‖∇g(ϕ(x))‖ . ‖∇f(x)‖ near 0. If ‖x‖θ .

‖∇g(x)‖, then

‖x‖θ ∼ ‖ϕ(x)‖θ . ‖∇g(ϕ(x))‖ . ‖∇f(x)‖
and we obtain L0(∇f) 6 L0(∇g).

The proof for K∗-equivalence is similar. Let A : (Cn, 0) → C∗ be a Lipschitz map

such that the map A−1 : (Cn, 0) → C∗ defined by A−1(x) = A(x)−1 is Lipschitz and

g(ϕ(x)) = A(x)f(x), for all x belonging to some open neighbourhood of the origin. Then

we obtain that

‖∇g(ϕ(x))‖ .‖∇g(ϕ(x))Dϕ(x)‖ (since ϕ−1 is Lipschitz)

=‖∇A(x)f(x) + A(x)∇f(x)‖ (since g(ϕ(x)) = A(x)f(x))

≤‖∇A(x)‖|f(x)| + |A(x)|‖∇f(x)‖
.|f(x)| + ‖∇f(x)‖ (since A(x) is Lipschitz)

.‖x‖‖∇f(x)‖ + ‖∇f(x)‖ (since |f(x)| . ‖x‖‖∇f(x)‖)

.‖∇f(x)‖,
almost everywhere and we conclude that L0(∇f) 6 L0(∇g). �

Theorem 6.2. Let I and J be ideals of On such that I and J are bi-Lipschitz equivalent.

Then ord(I) = ord(J), and L0(I) = L0(J) if I and J have finite colength.

Proof. Since I and J are bi-Lipschitz equivalent, there exist analytic map germs f =

(f1, . . . , fp) : (Cn, 0) → (Cp, 0) and g = (g1, . . . , gq) : (Cn, 0) → (Cq, 0) such that I =

〈f1, . . . , fp〉 , J = 〈g1, . . . , gq〉 and there exists a bi-Lipschitz homeomorphism ϕ : (Cn, 0) →
(Cn, 0) so that ‖g(ϕ(x))‖ ∼ ‖f(x)‖ near 0. By symmetry, it is enough to show that

L0(I) 6 L0(J) and ord(I) 6 ord(J).

Let θ ∈ R>0 such that ‖x‖θ . ‖g(x)‖ near 0. Then

‖x‖θ ∼ ‖ϕ(x)‖θ . ‖g(ϕ(x))‖ ∼ ‖f(x)‖
near 0 and we obtain that L0(I) 6 L0(J).

We remark that

ord(J) = max{s : J ⊆ ms
n} = max{s : J ⊆ ms

n} = max{s : ‖g(x)‖ . ‖x‖s near 0}.
If ‖f(x)‖ . ‖x‖s near 0, then we have

‖g(x)‖ ∼ ‖f(ϕ(x))‖ . ‖ϕ(x)‖s ∼ ‖x‖s

near 0 and we obtain ord(I) 6 ord(J). �

To end this section we show a result about the constancy of L0(∇ft) in deformations

of weighted homogeneous functions.
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Theorem 6.3. Let f : (Cn, 0) → (C, 0) be a weighted homogeneous function of degree

d with respect to w = (w1, . . . , wn) with an isolated singularity at the origin. Let w0 =

min{w1, . . . , wn}. Let us suppose that

(6.2) L0(∇f) = min

{

µ(f),
d− w0

w0

}

.

Let ft : (Cn, 0) → (C, 0) be an analytic deformation of f such that ft has an isolated

singularity at the origin, for all t. If µ(ft) is constant, then L0(∇ft) is also constant.

Proof. By a result of Varchenko [49] (see also [36, Proposition 2]), the deformation ft
verifies dw(ft) > d, for all t, where dw(ft) denotes the degree of ft with respect to w.

Then we have the following:

(d− w1) · · · (d− wn)

w1 · · ·wn

= µ(f) = µ(ft) >
(dt − w1) · · · (dt − wn)

w1 · · ·wn

>
(d− w1) · · · (d− wn)

w1 · · ·wn

.

Therefore dw(ft) = d and

µ(ft) =
(d− w1) · · · (d− wn)

w1 · · ·wn

for all t. Consequently ft is a semi-weighted homogeneous function, for all t, by [8,

Theorem 3.3] (see also [15]). Then, by [6, Corollary 4.7], we obtain

L0(∇ft) 6
d− w0

w0
.

By the lower semi-continuity of  Lojasiewicz exponents in µ-constant deformations (see

[39]) we have

min

{

µ(f),
d− w0

w0

}

= L0(∇f) 6 L0(∇ft) 6 min

{

µ(ft),
d− w0

w0

}

= min

{

µ(f),
d− w0

w0

}

.

Then the result follows. �

Since the order of a function can be seen as a  Lojasiewicz exponent, that is ord(f) =

L〈f〉(mn), for all f ∈ mn, we can consider the previous result as a counterpart of the

known results of O’Shea [36, p. 260] and Greuel [17, p. 164] in the context of  Lojasiewicz

exponents of gradient maps. We remark that in general we always have the inequality

(6) in (6.2).

7. Log canonical thresholds

The purpose of this section is to show in Theorem 7.3 that the log canonical threshold

lct(I) is bi-Lipschitz invariant. We also show Theorem 7.4, which enables us to compute

lct(I) in terms of  Lojasiewicz exponents when I is monomial. We start with a quick survey

on log canonical thresholds. We refer to the survey [34] for more information about the

notion of log canonical threshold.

The log canonical threshold of a function f : (Cn, 0) → C, denoted by lct(f), is the

supremum of those s so that |f(x)|−2s is locally integrable at 0, that is, integrable on

some compact neighbourhood of 0. This definiton is generalized for ideals as follows.
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Definition 7.1. Let I be an ideal of On. Let us consider a generating system {g1, . . . , gr}
of I. The log canonical threshold of I, denoted by lct(I), is defined as follows:

lct(I) = sup{s ∈ R>0 :
(
|g1(x)|2 + · · · + |gr(x)|2

)−s
is locally integrable at 0}.

It is straightforward to see that this definition does not depend on the choice of generating

systems of I. The Arnold index of I, denoted by µ(I), is defined as µ(I) = 1
lct(I)

(see for

instance [12]).

One origin of the notion of log canonical threshold comes back to analysis on complex

powers as generalized functions. M. Atiyah ([1]) showed a way to compute (candidate)

poles of complex powers using resolution of singularities. This leads to the following

well-known result.

Theorem 7.2. Let π : M → Cn be a proper modification so that (π∗I)0 =
∑

i miDi where

Di form a family of normal crossing divisors. Then

lct(I) = min
i

{ki + 1

mi

}

where KM =
∑

i

kiDi is the canonical divisor of M .

The proof is based on the following observation:
∫

‖x‖≤ε

|xm1
1 · · ·xmn

n |−2s|xk1
1 · · ·xkn

n |2dx ∧ dx̄√
−1

n < ∞ ⇐⇒ mis < ki + 1, for all i.

If I ⊆ mr
n, then

lct(I) 6 lct(mr
n) 6

lct(mn)

r
=

n

r
by [34, Property 1.14]. As a consequence, we conclude that lct(I) ord(I) 6 n. Combining

this with [34, Property 1.18], we have

1

ord(I)
6 lct(I) 6

n

ord(I)
.

Theorem 7.3.

(i) If two functions f and g of On are bi-Lipschitz K-equivalent, then lct(f) = lct(g).

(ii) If two ideals I and J of On are bi-Lipschitz equivalent, then lct(I) = lct(J).

Proof. (i): Assume that we have g(ϕ(x)) = φx(f(x)), for all x belonging to some open

neighbourhood of 0 ∈ Cn, for a bi-Lipschitz homeomorphism ϕ : (Cn, 0) → (Cn, 0),

x 7→ x′ = ϕ(x), and bi-Lipschitz homeomorphisms φx : (C, 0) → (C, 0), y 7→ y′ = φx(y).

By Rademacher’s theorem (see [27, Theorem 5.1.11]), ϕ is differentiable almost everywhere

in the sense of Lebesgue measure, and its jacobian J(ϕ) is measurable. By Lipschitz

property, we have |J(ϕ)| . 1 and |φx(y)| ∼ |y|. So we have
∫

ϕ(K)

|g(x′)|−2sdx
′ ∧ dx̄′

√
−1

n =

∫

K

|g(ϕ(x))|−2s|J(ϕ)|dx ∧ dx̄√
−1

n

.

∫

K

|φx(f(x))|−2sdx ∧ dx̄√
−1

n

.

∫

K

|f(x)|−2sdx ∧ dx̄√
−1

n
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where K is a compact neighbourhod of 0. This implies lct(f) 6 lct(g) and vice versa.

(ii): Choose f = (f1, . . . , fp) and g = (g1, . . . , gq) so that I = 〈f1, . . . , fp〉, J = 〈g1, . . . , gq〉
and ‖f(x)‖ ∼ ‖g(ϕ(x))‖ where ϕ : (Cn, 0) → (Cn, 0) is a bi-Lipschitz homeomorphism.

We have
∫

ϕ(K)

‖g(x′)‖−2sdx
′ ∧ dx̄′

√
−1

n =

∫

K

‖g(ϕ(x))‖−2s|J(ϕ)|dx ∧ dx̄√
−1

n .

∫

K

‖f(x)‖−2sdx ∧ dx̄√
−1

n

where K is a compact neighbourhod of 0. This implies lct(I) 6 lct(J) and vice versa. �

Theorem 7.4. Let I be an ideal of On such that V (I) ⊆ V (x1 · · ·xn). We have

(7.1) 1 6 lct(I)Lx1···xn
(I)

and equality holds when I is a monomial ideal.

Proof. Let us consider an analytic map germ f = (f1, . . . , fp) : (Cn, 0) → (Cp, 0) such

that I = 〈f1, . . . , fp〉. Let θ ∈ R>0 such that |x1 . . . xn|θ . ‖f(x)‖. If s > 0 then
∫

K

‖f(x)‖−2sdx ∧ dx̄√
−1

n .

∫

K

|x1 · · ·xn|−2sθdx ∧ dx̄√
−1

n .

Thus s < lct(I) whenever sθ < 1. This implies that 1/Lx1···xn
(I) 6 lct(I).

If I is monomial, then we consider the toric modification π : M → Cn corresponding to

a regular subdivision of Γ+(I). Let a denote a primitive vector which generate a 1-cone

of this regular fan. Then the order of |x1 · · ·xn|θ ◦ π is
∑n

i=1 aiθ = (ka + 1)θ along the

exceptional divisor corresponding to a, where ka denotes the multiplicity of the canonical

divisor along the component corresponding to a. The order of |f ◦ π| is ℓ(a, I) along the

exceptional divisor corresponding to a. So we have

Lx1···xn
(I) = max

{ℓ(a, I)
∑

i ai

}

=
1

lct(I)
,

where the maximum is taken over those a which correspond to the components of the

exceptional divisor of π. �

The previous result is motivated by [22, Example 5].

Example 7.5. Let us consider the ideal I = 〈x + y, xy〉 of C[[x, y]]. Then Lxy(I) = 1

and lct(I) = 3/2. We remark that I = 〈x + y〉 + 〈x, y〉2. Hence this example shows that,

in general, equality does not hold in (7.1).

Proposition 7.6. Let I and J be ideals of On such that V (J) ⊆ V (I). Then

(7.2) lct(I) 6 LI(J) lct(J).

Proof. Set I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉. If ‖f(x)‖θ . ‖g(x)‖, for some θ ∈ R>0

and we fix any s > 0 then
∫

K

‖g(x)‖−2sdx ∧ dx̄√
−1

n .

∫

K

‖f(x)‖−2sθ dx ∧ dx̄√
−1

n .

This means that sθ < lct(I) implies s < lct(J), i.e., lct(I)/θ 6 lct(J). We thus obtain

that lct(I) ≤ θ lct(J). �
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Remark 7.7. It is natural to ask when the equality holds in (7.2). If I and J are

monomial ideal of On, then we have

lct(I) = min
a∈Rn

>0

{ ∑

i ai
ℓ(a, I)

}

, lct(J) = min
a∈Rn

>0

{ ∑

i ai
ℓ(a, J)

}

, LI(J) = max
a∈Rn

>0

{ℓ(a, J)

ℓ(a, I)

}

.

When the same a attains these minimums and maximum, we have lct(I) = LI(J) lct(J).

8. Log canonical thresholds of generic sections

Definition 8.1. Let I be an ideal of On. For any integer k ∈ {0, 1, . . . , n− 1} we set

lct(n−k)(I) = lct(I|L),

where L denote a generic (n− k)-dimensional linear subspace of Cn, and I|L denote the

restriction of the ideal I to the space L.

By the semicontinuity of the log canonical threshold ([29, Corollary 9.5.39]), for every

family {Lt}t∈U of linear subspaces of dimension n − k with L0 = L there is an open

neighborhood W of 0 such that lct(I|Lt
) > lct(I|L0) for every t ∈ W . So lct(n−k)(I|L)

is well-defined and characterized as maximal possible one, despite of the fact that the

isomorphism classes of I|Lt
may vary along t.

When L is the zero set of h1, . . . , hk, then lct(n−k)(I) is the log canonical threshold of

the ideal generated by the image of I in On/〈h1, . . . , hk〉. By Proposition 4.5 of [33] (or

Property 1.17 of [34]), we have

(8.1) lct(1)(I) 6 lct(2)(I) 6 · · · 6 lct(n)(I)

We know that lct(n)(I) = lct(I) and lct(1)(I) = 1/ ord(I) are bi-Lipschitz invariant. So it

is natural to ask the following

Question 8.2. Is lct∗(I) = (lct(n)(I), lct(n−1)(I), . . . , lct(1)(I)) a bi-Lipschitz invariant?

Theorem 7.4 has the following analogy for lct(k)(I).

Theorem 8.3. Let I be an ideal of On such that V (I) ⊆ V (x1 · · ·xn). Then

1 − k

n
6 lct(n−k)(I)L(n−k)

x1···xn
(I)

for all k = 0, 1, . . . , n− 1.

Proof. Let L be a linear (n− k)-dimensional subspace of Cn. Assume that I is generated

by f1, . . . , fm and set f = (f1, . . . , fm). Let Hi = {hi = 0} denote a generic hyperplane of

Cn through 0 so that L = H1∩· · ·∩Hk. Let ω denote an (n−k)-form with dx1∧· · ·∧dxn =

dh1 ∧ · · · ∧ dhk ∧ ω. Let π : M → Cn denote the blow up at the origin and let h′
i denote

the strict transform of hi. Set x1 = u1 and xi = u1ui (i = 2, . . . , n). Since hi = u1h
′
i, then

dhi = d(u1h
′
i) = u1dh

′
i + h′

idu1 = u1dh
′
i

on the set defined by h′
i = 0. Let ω′ denote an (n−k)-form with du1∧· · ·∧dun = dh′∧ω′.

Since L is generic, the strict transform L′ of L and the zeros of ui (i = 2, . . . , n) form a

normal crossing variety. Since

(u1dh
′
1) ∧ · · · ∧ (u1dh

′
k) ∧ ω =dh1 ∧ · · · dhk ∧ ω
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=dx1 ∧ · · · ∧ dxn

=un−1
1 du1 ∧ · · · ∧ dun on L′,

we may assume that ω = un−k−1
1 ω′ on L′. If |x1 · · ·xn|θ . ‖f‖ on L, we have

∫

K∩L

‖f‖−2s ω ∧ ω̄
√
−1

n−k
.

∫

K∩L

|x1 · · ·xn|−2θs ω ∧ ω̄
√
−1

n−k

=

∫

π−1(K)∩L′

|un
1u2 · · ·un|−2θs|u1|2(n−k−1) ω′ ∧ ω̄′

√
−1

n−k

=

∫

π−1(K)∩L′

|u1|−2(nθs−n+k+1)|u2 · · ·un|−2θs ω′ ∧ ω̄′

√
−1

n−k

which is integrable whenever nθs < n−k. So we have that s < (1− k
n
)/L(n−k)

x1···xn
(I) implies

s < lct(n−k)(I), and we have

1 − k

n
6 lct(n−k)(I)L(n−k)

x1···xn
(I).

�

We close the paper to show a closed formula for lct(k)(I) when I is monomial.

Theorem 8.4. Let I be an ideal of On such that I is a monomial ideal. Then

lct(k)(I) = min
{∑

i ai − (n− k)amin

ℓ(a, I)
: a ∈ S(k)

}

= inf
{∑

i ai − (n− k)

ℓ(a, I)
: a ∈ S(k) ∩ A

}

where A = {a = (a1, . . . , an) : min{a1, . . . , an} = 1}, for all k ∈ {1, . . . , n}.

Proof. We may assume that I is a monomial ideal. We consider a toric modification

σ : X → Cn which dominate the blowing up at the origin. There is a coordinate system

(y1, . . . , yn) so that σ is expressed by

xi = y
a1
i

1 · · · ya
n
i

n (aji ∈ Z, i = 1, . . . , n).

Then we have hi = y
a1min
1 · · · ya

n
min

n h̃i where h̃i denotes the strict transform of hi by σ. So

we have

dhi = y
a1min
1 · · · ya

n
min

n dh̃i

on the set defined by h̃i = 0. Since
(

∧k
i=1(y

a1min
1 · · · ya

n
min

n dh̃i)
)

∧ ω =dh1 ∧ · · · ∧ dhk ∧ ω

=dx1 ∧ · · · ∧ dxn

=y
∑

i
a1
i
−1

1 · · · y
∑

i
an
i
−1

n dy1 ∧ · · · ∧ dyn

we obtain that

ω = y
∑

i
a1
i
−ka1min−1

1 · · · y
∑

i
an
i
−kanmin−1

n ω̃
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where ω̃ is a holomorphic (n − k)-form which does not vanish on the strict transform L̃

of L by σ with

dy1 ∧ · · · ∧ dyn = dh̃1 ∧ · · · ∧ dh̃k ∧ ω̃.

Since L is generic, L̃ and the zeros of yj form a normal crossing variety and we conclude

that

lct(n−k)(I) = min
{∑

i ai − kamin

ℓ(a, I)
: a ∈ S(n−k)

}

.

We complete the proof by replacing k by n− k. �
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24 CARLES BIVIÀ-AUSINA AND TOSHIZUMI FUKUI

[21] M. Hickel, Fonction asymptotique de Samuel des sections hyperplanes et multiplicité, J. Pure Appl.
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Caḿı de Vera, s/n, 46022 València, Spain
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